Copper influence on polyphosphate metabolism of Cunninghamella elegans
نویسندگان
چکیده
منابع مشابه
Cadmium Tolerance and Removal from Cunninghamella elegans Related to the Polyphosphate Metabolism
The aim of the present work was to study the cadmium effects on growth, ultrastructure and polyphosphate metabolism, as well as to evaluate the metal removal and accumulation by Cunninghamella elegans (IFM 46109) growing in culture medium. The presence of cadmium reduced growth, and a longer lag phase was observed. However, the phosphate uptake from the culture medium increased 15% when compare...
متن کاملMetabolism of naphthalene by Cunninghamella elegans.
Cunninghamella elegans grown on Sabouraud dextrose broth in the presence of naphthalene produced six metabolites. Each product was isolated and identified by conventional chemical techniques. The major metabolites were 1-naphthol (67.9%) and 4-hydroxy-1-tetralone (16.7%). Minor products isolated were 1,4-naphthoquinone (2.8%), 1,2-naphthoquinone (0.2%), 2-naphthol (6.3%), and trans-1,2-dihydrox...
متن کاملFungal metabolism of acenaphthene by Cunninghamella elegans.
The filamentous fungus Cunninghamella elegans ATCC 36112 metabolized within 72 h of incubation approximately 64% of the [1,8-14C]acenaphthene added. The radioactive metabolites were extracted with ethyl acetate and separated by thin-layer chromatography and reversed-phase high-performance liquid chromatography. Seven metabolites were identified by 1H nuclear magnetic resonance, UV, and mass spe...
متن کاملBiotransformation of mirtazapine by Cunninghamella elegans.
The fungus Cunninghamella elegans was used as a microbial model of mammalian metabolism to biotransform the tetracyclic antidepressant drug mirtazapine, which is manufactured as a racemic mixture of R(-)- and S(+)-enantiomers. In 168 h, C. elegans transformed 91% of the drug into the following seven metabolites: 8-hydroxymirtazapine, N-desmethyl-8-hydroxymirtazapine, N-desmethylmirtazapine, 13-...
متن کاملTransformation of amoxapine by Cunninghamella elegans.
We examined Cunninghamella elegans to determine its ability to transform amoxapine, a tricyclic antidepressant belonging to the dibenzoxazepine class of drugs. Approximately 57% of the exogenous amoxapine was metabolized to three metabolites that were isolated by high-performance liquid chromatography and were identified by nuclear magnetic resonance and mass spectrometry as 7-hydroxyamoxapine ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Brazilian Journal of Microbiology
سال: 2005
ISSN: 1517-8382
DOI: 10.1590/s1517-83822005000400002